Question Number	Marking Guidelines	Additional Information
1.(a)	160;	
1.(b)	Attempt at long division; Obtains 4.57;	Must get as far as obtaining 4 for first mark. Must be to two decimal places for second mark.
2.	Diagram stem and leaves correct; Diagram ordered; Key included (eg. 1 \| $2=12 \mathrm{~cm}$);	Mark independently.
3.	Correct substitutions (t must = 90); Obtain 60(J);	Allow one mark for answer of 1. (Obtained by using $t=1.5$)
4.	$\begin{aligned} & \frac{2}{5}=\frac{4}{10} ; \\ & \frac{1}{3}=\frac{4}{12} ; \\ & \frac{7}{14}=\frac{1}{2} ; \end{aligned}$	One mark for each. Additional lines between fractions negate one correct mark each.
5.(a)(i)	3b-7a	Accept terms in either order.
5.(a)(ii)	$5 \mathrm{a}^{2}$;	
5.(b)	$\begin{aligned} & 4 a-6 a b+2 b+5 a b ; \\ & 4 a-a b+2 b ; \end{aligned}$	Correct expansion = 1 mark Correct simplification = 1 mark Accept terms in any order.
6.(a)	4(p+2);	
6.(b)	$\begin{aligned} & (p \pm 5)(p \pm 2) ; \\ & (p-5)(p+2) ; \end{aligned}$	First mark for obtaining 5 and 2 and using brackets correctly. Second mark for use of correct signs. Accept brackets in any order.
6.(c)	$\begin{aligned} & (\mathbf{k} p \pm \mathbf{a})(\mathbf{k} p \mp \mathbf{a}) ; \\ & (9 p+2)(9 p-2) ; \end{aligned}$	Demonstrates use of difference of two squares to obtain two bracketed terms. Signs in the two brackets must be opposite. Allow any positive value for \mathbf{k} and \mathbf{a}. Obtain fully correct factorisation.
7.(a)	$8 \pi ;$	Or equivalent (ie. $2 \times 4 \pi$)

7.(b)	Demonstrates use of πr^{2}; Obtains 16π; Divides their circle area by $2(=8 \pi)$;	Give $3^{\text {rd }}$ marking point even if wrong area of circle divided by 2.
8.(a)	50\%;	Must be percentage.
8.(b)(i)	25\% / $\frac{1}{4} / 0.25 ;$	Or equivalent (ie. 1 in 4).
8.(b)(ii)	0.5×0.5 seen or implied; $25 \% / \frac{1}{4} / 0.25$;	Or equivalent (ie. 1 in 4).
8.(c)	3 rounds;	
9.(a)	Obtain $\frac{2 x^{2}}{2 x^{2}+4 x}$; Factorise denominator to $2 x(x+2)$;	Blue over sum of all beads.
9.(b)	State $\frac{x}{(x+2)}=\frac{1}{3}$ OR $\frac{2 x^{2}}{2 x^{2}+4 x}=\frac{1}{3}$; $x=1 ;$ And hence total beads $=6$;	
10.(a)(i)	16;	
10.(a)(ii)	6n-5;	
10.(b)(i)	($3 \mathrm{n}+1$, Their answer to (a)(ii))	
10.(b)(ii)	State or imply gradient as $\frac{\Delta y}{\Delta x}$; Obtain gradient as 2 ; State $y=2 x-7$;	

